

Broadband Vibration Energy Harvesting

Frequency tuning and bistable solutions

Dr Dibin Zhu

Energy Harvesting 2015 19 March 2015

Overview

- Motivation
- Frequency Tuning
 - Basics
 - Mechanical tuning method
 - Electrical tuning method
 - Performance of linear energy harvesters under multiple-peak excitations
- Coupled Bistable Structures for Energy Harvesting Applications
 - Principle
 - Coupled bistable vibration energy harvesters
- Conclusions

Motivation

Motivation

A linear vibration energy harvesters can be modelled as a spring-massdamper system. 10°

Maximum power is generated only when resonant frequency matches ambient vibration frequency.

Motivation

Motivation: to increase operational bandwidth of vibration energy harvesters:

Frequency Tuning

Basics

Passive and Active Frequency Tuning

- Passive frequency tuning methods do not require extra energy but are uncontrollable.
- Active frequency tuning methods require extra energy. Closed-loop control schemes can be applied to enable automatic and accurate frequency tracking.
 - Mechanical methods: Tuning by altering mechanical properties.
 - Electrical methods: Tuning by altering electrical damping.

Intermittent and Continuous Tuning

- Intermittent tuning: Energy is consumed periodically to tune the frequency.
- Continuous tuning: The tuning mechanism is continuously powered.
- Intermittent tuning is more efficient.
 - It is turned off when the harvester works at the right frequency.
 - Producing a positive net output energy is more probable.

Evaluation of Tuning Methods

- The energy consumed by the tuning mechanism should be as small as possible and must not exceed the energy produced by the energy harvester.
- The tuning mechanism should achieve a sufficient operational frequency range.
- The tuning mechanism should achieve a suitable degree of frequency resolution.
- The tuning mechanism applied should not increase the damping within the effective tuning range.
- The tuning mechanism should be applicable to automatic frequency tracking.

Frequency Tuning Mechanical tuning method

Principle

For a cantilever based energy harvester operating in the fundamental flexural mode (mode 1); its resonant frequency an axial load, f_{r1} ', is given by:

A Tunable Vibration Energy Harvester

- Contactless (magnetic) force is applied.
- A linear actuator is used to adjust the position of the tuning magnet, thus the tuning force.

Compressive forces increase damping while tensile forces reduces damping.

Closed-loop Frequency Tuning

Closed-loop Frequency Tuning

- Frequency shifts ~1Hz
- Harvester's voltage drops when off-resonance
- MCU wakes from sleep every 320 seconds

Case Study

A Red Funnel ferry running between Southampton and Isle of Wight

A tunable vibration energy harvester powering wireless sensors on a Red Funnel ferry

Typical vibration on the engine

Normal speed (~715RPM)		Fast speed (~750RPM)		
$f(\mathrm{Hz})$	Ampl. (m \boldsymbol{g}_{pk})	$f(\mathrm{Hz})$	Ampl. (m \boldsymbol{g}_{pk})	
47-48 Hz	700 - 950	~50	450	

Frequency tuning range of the energy harvester: 42 - 55 Hz

Real-time output power of the harvester during 16 one crossing

Case Study

Frequency Tuning Electrical tuning method

Principle

- The basic principle of electrical tuning is to change the electrical damping by adjusting the electrical load (*R*, *L*, *C*), which causes the power spectrum of the energy harvester to shift.
- Strong electromechanical coupling is required to achieve large frequency range.

Equivalent circuit of an electrically tunable vibration energy harvester

An Electrically Tunable Vibration Energy Harvester

Excitation level: 10m*G*

Frequency Tuning Performance of linear energy harvesters under multiple-peak excitations

Multiple-peak Excitations

- Main peak: f_o , $G(f_0)$
- Interference peak: f_i , $G(f_i)$

Performance of Linear Energy Harvesters under Multiple-peak Excitations

Output power drops as

- Frequency difference increases
- Amplitude of the interference peak increases

Coupled Bistable Structures for Energy Harvesting Applications

Conventional Bistable Structures

- It consists of a cantilever with a magnet at the tip and a fixed magnet.
- Repelling force between the two magnets.
- Inertial mass jumps between two equilibrium positions.
- Bistable vibration energy harvesters have better performance under wideband excitation compared to a linear harvester.
- It requires great excitation level to trigger bistable operation.

Coupled Bistable Structures

- The coupled bistable structure requires lower excitation to trigger the bistable operation.
- It is preferred that the resonant frequency of the assisting cantilever is lower than that of the main cantilever $(k_2 < k_1)$.

Coupled Bistable Energy Harvester 1

Electromagnetic energy harvester with a couple bistable structure

coi

- Main cantilevers: 28.9 Hz
- Assisting cantilever: 16 Hz

Comparison of charging rate under white noise excitation

Coupled Bistable Energy Harvester 2

Coupled Bistable Energy Harvester 2

Nonlinear structureNonlinear structure(top and bottom magnets) (middle and bottom/top magnets)

Linear resonator* (coil spring)

29

Assembled Harvester

Harvester D-battery Diameter: 40 mm Length: 56 mm (including the mounting section)

Harvester mounted on the shaker

Results

 $0.5 g (4.9 \text{ m} \cdot \text{s}^{-2})$

 $0.6 g (5.88 \text{ m} \cdot \text{s}^{-2})$

Peak 1: nonlinear (top and bottom magnets) Peak 2: nonlinear (middle and top/bottom magnets) Peak 3: linear* (coil spring)

Results

 $0.7 g (6.86 \text{ m} \cdot \text{s}^{-2})$

 $0.8 \ g (7.84 \ m \cdot s^{-2})$

Peak 1: nonlinear (top and bottom magnets) Peak 2: nonlinear (middle and top/bottom magnets) Peak 3: linear* (coil spring)

Results

 Power: Maximum output power is generated when connected to the optimal resistive load of 13 Ω.

Half power bandwidth

Acceleration (g)	0.5	0.6	0.7	0.8
Bandwidth of the nonlinear harvester (Hz)	4	6.5	7	7.5
Bandwidth of coupled bistable harvester (Hz)	14.5	14	15	14

Conclusions

Southampton

Conclusions

Frequency tuning

- Mechanical tuning methods have a larger tuning range.
- Electrical tuning methods have a higher frequency resolution.
- Electrical tuning methods consume less energy than mechanical tuning methods.
- Applications of a tunable vibration energy harvester was demonstrated.
- Performance of a linear harvester is compromised under wideband excitations.
- Coupled bistable structure
 - The coupled bistable structure requires lower excitation to trigger the bistable operation compared to conventional bistable structures.
 - Coupled bistable energy harvesters have better performance than both linear and Duffing's nonlinear energy harvesters under wideband excitations.

Acknowledgement

University of Southampton

Steve Beeby, John Tudor, Alex Weddell, Ivo Ayala, Derek Arthur, Abiodun Komolafe

Perpetuum Ltd,

Steve Roberts, Thomas Mouille, Adam Wasenczuk

Thank you for your attention! Questions?

http://www.eh.ecs.soton.ac.uk

Dr Dibin Zhu dz@ecs.soton.ac.uk 37